
Abstract. We have upgraded a Self-consistent-field –
Hartree–Fock routine to include a finite nuclear mass
correction for molecules developed in our laboratory.
The new routine can handle isotopomers without cal-
culating any nuclear kinetic energy matrix element. Tests
on H2, LiH, HF, F2, and H2O isotopomers indicate the
equivalence of our correction to the standard diagonal
adiabatic correction. A further original application to
C2H6 illustrates the usefulness of the method for poly-
atomic molecules. The resulting molecular orbitals carry
the nuclear mass signature, exemplified with Koopmans’
ionization potentials.
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1 Introduction

Most ab initio molecular calculations resort to the Born–
Oppenheimer (BO) approximation. On this level, the only
point where finite nuclear mass effects (the isotope
problem) are concerned is in the solution of the (quantal
or classical) nuclear equations of motion. The increasing
experimental accuracy, however, demands the inclusion
of finite nuclear mass effects in the solution of the
electronic problem, i.e., in the generation of potential-
energy surfaces (PES). When the problem involves
isotopes of the hydrogen atom, the nuclear mass correc-
tions are even more important than the relativistic ones.

One way to include these effects in the PES is through
the diagonal (or adiabatic) BO corrections (DBOC), and

a self-consistent-field (SCF) methodology for this has
been developed by Handy et al. [1]. In this method, the
DBOC is obtained by averaging, with the SCF–BO
wavefunction, the nuclear kinetic energy operator in the
laboratory frame, instead of the body-fixed molecular
frame, a procedure that avoids mixing of electronic and
nuclear coordinates (the mass polarization terms).
Kutzelnigg [2] has proved the theoretical correctness of
this procedure and Cencek and Kutzelnigg [3] checked its
accuracy for H2 with a correlated wavefunction. Handy
and coworkers [1, 4] reported test calculations of SCF–
DBOC for some small molecules in their equilibrium
geometries. Dinelli et al. [5] and Polyansky et al. [6] ex-
plored the method to improve theoretical predictions for
the transition frequencies of Hþ3 . More recent applica-
tions are those by Tarczay and coworkers in studies of
the barriers to linearity of H2O [7] and H2S [8].

In spite of these advances, relative to more difficult
calculations that use internal coordinates [9], there are
remaining difficulties in the calculation of matrix ele-
ments of nuclear kinetic energy operators for larger
systems, which seems to be an obstacle to the generalized
application of this method. Besides that, in its very
conception, DBOC does not modify the wavefunction,
i.e., the calculation of molecular properties is not af-
fected by the nuclear motion corrections.

In this paper, we introduce a new molecular orbital –
linear combination of atomic orbitals (MO–LCAO)
method on the Hartree–Fock (HF) level that is able to
handle finite nuclear mass effects and present some new
features. First, it explores the machinery of standard
SCF–BO computer programs, with no need of calcula-
tion of new matrix elements, meaning no extra compu-
tational burden and no other limitations than those
common to standard SCF–HF calculations. Second, it
imparts to the MOs the signature of the nuclear masses,
affecting the calculation of molecular properties.

As a consequence of this last point, we are faced with
a question that concerns the fundamentals of MO
theory, namely the geometrical symmetry properties of
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the MOs generated by the new approach. The very
existence of this kind of symmetry is usually questioned
as one works beyond the BO approximation. In a pre-
vious work on the symmetry properties of the MOs of
HDþ [10] we found that, as we include the nuclear mass
effects, the MOs present an overall reduction of the
point group symmetries, from D1h to C1v, but a
correlation diagram can be generated, in which the
new symmetries are preserved and the noncrossing
rule is mantained as well. A generalization of these
conclusions to polyatomic molecules is still missing, and
we thus postpone the general study of isotope symmetry-
breaking to a future publication. In consequence, we
limit our applications here to systems in which the
nuclear mass effects do not yield symmetry-breaking.
For instance, we calculate D2O, but not HDO.

Methodology and tests

Based on the realization that the adiabatic correction is
much like a reduced mass effect [4], a finite nuclear mass
correction (FNMC) for molecules has been developed in
our laboratory [11, 12]. It was tested in calculations of an
one-electron diatomic molecule with a single MO [11]
and a two-electron diatomic molecule with a valence
bond wavefunction [12], and was shown to be quite close
to accurate DBOC calculations. In our approach,
however, a fundamental difference from DBOC is that
we keep the spirit of variational adiabatic calculations,
in which the electronic wavefunctions are approximate
eigenfunctions of the total Hamiltonian, instead of the
BO one. This widens the applicability of FNMC to
exotic molecular systems with very light nuclei [13], a
case in which the BO–based methods are useless.
Furthermore, the outcoming wavefunction carries itself
the signature of the nuclear masses and, consequently, of
eventual isotope asymmetries [10].

For simple one- and two-electron molecules [11, 12,
14], our approach was based on the construction of an
effective BO Hamiltonian, in which the electron mass is
scaled (becoming a function of the internuclear distance)
so that both the united atom (UA) and separated atom
(SA) asymptotic limits are correctly obtained (except for
possible very small mass polarization terms for different
electrons). This is granted by the procedure of optimizing
the atomic orbitals so that the total energy is minimized;
this was first introduced by Rost and Briggs [15]. By
postulating, for finite nuclear distances, an atomic form
for the electron reduced mass, we arrived at the FNMC
(Eq. 9 of Ref. [12], for example). Although this effective
BO Hamiltonian formalism is not feasible for larger
molecules, its outcome becomes very simple to general-
ize: ‘‘whenever an electron occupies an AO, we must add
to its kinetic energy an atomic mass polarization correc-
tion’’. Explicitly, for a MO–LCAO wavefunction, con-
sider the BO total energy in terms of a set of AOs, or basis
functions, /lA

� �
, where A is the nucleus where the orbital

is centered and l stands for all other AO features. To
each electronic kinetic energy matrix element of the kind

TlmAB ¼ /lA �r
2

2

���
���/mB

D E
we add the correction

QlmA ¼
TlmAB

MA
if A ¼ B

0 if A 6¼ B

�
; ð1Þ

where MA is the mass of nucleus A relative to the electron
mass Me ¼ 1 au. In other words, the individual correc-
tions apply just to single-center matrix elements. The
mass-dependent total energy, symbolized by
E ¼ EBO þ Q (where Q, the total correction, also
depends on the squares of the linear coefficients) is then
minimized. This prescription becomes exact for one-
electron atoms, nearly exact for many-electron atoms,
and presented very good results for one- and two–
electron diatomic molecules with different wavefunctions
[10, 11, 12, 13, 14]. It is important to note that the joint
procedure of mass scaling of the electronic BO Hamil-
tonian and variational optimization of the AOs, that
leads to proper UA and SA limits, allows us to obtain
not only the common molecular diagonal mass polari-
zation correction (that accounts just for the correct UA
limit), but also a substantial amount of the internal
nuclear kinetic energy correction. Further details about
this point are in Ref. [11, 12].

Here we report an upgrade of a SCF–HF routine to
include the FNMC. As stated previously [1, 4], the SCF
level is appropriate to perform adiabatic corrections to
PES. The original routine is one developed (and kindly
granted to us) by Rico et al. [16] in which all two-center
integrals are evaluated with Slater-type orbitals (STOs).
Although not a sine qua non condition, this is very
convenient for our purposes. In fact, the correction of a
typical ten-electron molecule affects the third decimal
digit of the energy (atomic units), i.e., the HF energy
must be converged at least in this place, in order for the
correction to be meaningful, which is much more easily
attained with STOs than with the more usual Gaussian-
type orbitals.

In the closed-shell restricted HF–MO–LCAO
approximation, keeping the same notation as earlier, we
write the HF energy as

E ¼ U HBO þQj jUh i
UjUh i ; ð2Þ

where U is a Slater determinant built with AOs, and the
notation for the operator Q is symbolic, meaning just
that the previous prescription is followed. Minimizing E
relative to the MOs leads us to redefine the usual Fock
matrix elements as

F fnmc
lm ¼ Flm þ QlmA ð3Þ

and the HF energy as

Efnmc ¼ 1

2

X

lm

Plmðhlm þ F fnmc
lm Þ ; ð4Þ

where hlm and Flm are, respectively, the standard core and
Fock matrices, Plm is the density matrix and the cor-
rections QlmA are those defined in Eq. (1). Thus, the
subscript A in the second term of Eq. (3) means that the
corrections are added just to single-center matrix
elements. Except for these changes, the applications
follow the lines of standard SCF–MO–LCAO calcula-
tions.

368



Computations of a series of closed-shell diatomic and
triatomic molecules, with 2–18 electrons, were made in
order to compare FNMC with DBOC. An illustrative
original calculation with an eight-atom molecule, C2H6,
completes our examples. In the calculations, neutron
and proton masses are taken as 1836:1527 au.

The only system for which exact DBOCs are available
is H2 [17], amounting to 114:591 cm�1 (1 hartree ¼
219474; 631 cm�1) at the equilibrium distance, R ¼ 1:4
au. The MC–SCF result for DBOC, from Ref. 4, is 101
cm�1. As a general rule, SCF calculations make part of
the correction, viz. the mass polarization terms for dif-
ferent electrons, vanish. For H2 this term amounts to
about 5:2% of the total correction [17], which explains
part of the difference reported in Ref. [4]. Our HF–SCF
correction, for a large basis set, amounts to 85 cm�1, a
disappointing but deceptive result that we attribute to
the bad HF description of H2 and not to the approach
itself. In fact, with a valence bond wavefunction we have
obtained much better agreement [12].

On the other hand, tests with LiH, HF, F2, H2O, and
D2O have yielded stimulating results. The results, shown
in Table 1, correspond to basis sets that reproduce the
HF limit energy with an appropriate number of digits.
The equilibrium geometries are reoptimized, but differ
very little from the BO ones, for equal basis sets. We
observed similar behavior with DBOC [1] concerning
changes in the basis sets, i.e., FNMC becomes lower and
converges as the basis set is improved.

The FNMC for LiH is still bellow, but much closer
to, the corresponding DBOC, as compared to the H2

case. On the other hand, for the other molecules,
FNMCs becomes systematically 6–7% larger than
DBOC. This turns to be a very convenient feature in
view of the vanishing of the mass polarization term in
any SCF calculation. We are thus led to speculate that
our approach overestimates the correction by an amount
that, with good approximation, compensates the absence
of this term. This feature is potentialy able to make
SCF–FNMC more accurate than SCF–DBOC but,
unfortunately, this could not be checked in view of our
bad results for H2. A last test calculation with HCl
advances a problem that did not appear in another
18-electron system (F2). The mass of the Cl nuclei is

large enough to deteriorate the corrections for individual
electrons, so that the final FNMC is a sum of many less
accurate small terms, and is also less accurate. To
account for this problem we will probably need to work
with saturated basis sets. Anyway, the adiabatic cor-
rections to heavy-nuclei molecules become relatively less
important and much lower than the relativistic ones.

The last system that we consider is C2H6, with the
corresponding data shown also in Table 1. We have not
found any previous calculation of the adiabatic correc-
tion to this or any other molecule with nuclearity larger
than 5 (the largest nuclearity we have detected is for a
few-electron system, Hþ5 [1]) so we include this calcula-
tion as illustrative of the new facility allowed by our
method. The calculation was done with a staggered
optimized conformation. The effects of the FNMCs on
the internal rotation barrier will be the subject of further
detailed investigation.

The isotope effect on the MOs and final remarks

Though the MOs depend on the nuclear masses, the HF
level is not accurate enough to obtain small isotope
effects like the dipole moment of HD [18]. Our
calculations of this quantity, despite giving a nonzero
value and the correct order of magnitude, did not
converge to a reliable value. This feature must be
corrected by a higher-level electronic structure calcula-
tion (valence bond, multiconfigurational SCF, etc.).

Here we illustrate the effect of FNMCs on the orbital
properties with the Koopmans’ ionization potentials (IP)
for the various molecules considered Table 1. The dif-
ference between the predicted IPs for water and its iso-
topomer D2O is particularly illustrative, showing that a
little more energy is needed to pull an electron out from
D2O than from H2O. Another remark is that, though the
large difference from Koopmans’ IPs to experimental
values is due to the lack of correlation, our values point
correctly to the experimental results, which means
smaller IPs.

Since all the methodological problems reported here
are ascribed not to the method itself, but to the HF level
of approximation, it seems natural to go to higher levels
of configuration interaction to improve its capability.
This is presently being considered in our group.
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14. Gonçalves CP, Mohallem JR (2000) Chem Phys Lett 320: 118
15. Rost JM, Briggs JS (1987) Z Phys D 5: 339
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